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Spatial transcriptomics is a groundbreaking technology that allows the
measurement of the activity of thousands of genes in a tissue sample and maps
where the activity occurs. This technology has enabled the study of the spatial
variation of the genes across the tissue. Comprehending gene functions and
interactions in different areas of the tissue is of great scientific interest, as it
might lead to a deeper understanding of several key biological mechanisms,
such as cell-cell communication or tumor-microenvironment interaction. To
do so, one can group cells of the same type and genes that exhibit similar
expression patterns. However, adequate statistical tools that exploit the pre-
viously unavailable spatial information to more coherently group cells and
genes are still lacking.

In this work we introduce SPARTACO, a new statistical model that clus-
ters the spatial expression profiles of the genes according to a partition of the
tissue. This is accomplished by performing a co-clustering, that is, inferring
the latent block structure of the data and inducing two types of clustering: of
the genes, using their expression across the tissue, and of the image areas,
using the gene expression in the spots where the RNA is collected. Our pro-
posed methodology is validated with a series of simulation experiments, and
its usefulness in responding to specific biological questions is illustrated with
an application to a human brain tissue sample processed with the 10X-Visium
protocol.

1. Introduction.

1.1. The rise of spatial transcriptomics. In the last few years we have witnessed a dra-
matic improvement in the efficiency of DNA sequencing technologies that ultimately gave
rise to new advanced protocols for single-cell RNA sequencing (scRNA-seq) and, more
recently, spatial transcriptomics. In particular, spatial transcriptomics has been chosen as
method of the year 2020 (Marx (2021)). With respect to scRNA-seq, spatial transcriptomic
platforms are able to provide, in addition to the abundance, the locations of thousands of
genes in a tissue sample.

Righelli et al. (2021) classify spatial transcriptomic protocols into molecule-based and
spot-based methods. Among molecule-based methods, seqFISH (Lubeck et al. (2014)) and
similar methods, such as MERFISH (Chen et al. (2015)), are capable of providing the spatial
expression of thousands of transcripts at a subcellular level, but the setup necessary to per-
form this kind of spatial experiments is often complex and expensive to recreate. Spot-based
methods, such as Slide-seq (Rodriques et al. (2019)) or the 10X Genomics Visium platform
(Rao, Clark and Habern (2020)), have substantially lower resolution than seqFISH but allow
scientists to measure close to the whole transcriptome of (small pools of) cells across a tissue
in a relatively easy manner.

Briefly, in the Visium platform the data collection process is performed by placing a slice
of the tissue of interest over a grid of spots so that every spot contains a few neighboring
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FIG. 1. Tissue sample of LIBD human dorsolateral prefrontal cortex (DLPFC) processed with Visium platform
and stored in the R package spatialLIBD. The dots represent the spots over the chip surface. Different colors
denote a manual annotation of the areas performed by Maynard et al. (2021): they recognize a White Matter
(WM) stratum in the bottom-left part of the image, and six layers (from L6 to L1) moving toward the top right.

cells. The gene expression of each spot is then characterized, resulting in a dataset made
of tens of thousands of genes for each spot, together with the spatial location of the spots.
Figure 1 shows an example of human dorsolateral prefrontal cortex (DLPFC) processed with
Visium at the Lieber Institute for Brain Development (Maynard et al. (2021)). The colored
dots denote a manual annotation of the spots performed by Maynard et al. (2021). The dataset
is available in the R package spatialLIBD (Pardo et al. (2021)).

The rise of spatial transcriptomics has motivated the development of new statistical meth-
ods that handle the identification of spatially expressed (s.e.) genes, that is, genes with spatial
patterns of expression variation across the tissue. Specific inferential procedures for detecting
such kind of genes, such as SpatialDE (Svensson, Teichmann and Stegle (2018)) and Trend-
sceek (Edsgärd, Johnsson and Sandberg (2018)), have been proposed only in the last years.
These methods are widely computationally efficient, but sometimes they reach discordant in-
ferential conclusions, and additionally, they fail to account for the correlation of the genes.
The very recent algorithm by Sun, Zhu and Zhou (2020), called SPARK, has addressed some
of the limitations of the earlier methods. However, the additional information brought by
the new spatial transcriptomic platforms has raised several questions, both on the biological
and the statistical side: detecting the s.e. genes is thus not the end of the analysis but just
its beginning. In this article we want to focus on three specific research questions, that is, to
determine:

(i) the clustering of the areas of the tissue sample according to the spatial variation of
the genes;

(ii) the existence of clusters of genes which are s.e. only in some of the areas discovered
from (i);

(iii) the highly variable genes in the areas discovered from (i) net of any spatial effect.

Research question (i) is fundamental for the analysis of tissue samples because it is the start-
ing point for successive downstream analyses. The recent GIOTTO (Dries et al. (2021)) and
BayesSpace (Zhao et al. (2021)) methods are unsupervised clustering algorithms for spot-
based spatial transcriptomics, designed for inferring the cell types making up a tissue. They
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perform a clustering based on the principle that neighboring spots are likely to be annotated
with the same label without exploiting the information carried by s.e. genes. Thus, these
methods respond to a substantially different research question than (i).

Research question (ii) is of great scientific interest but, to the best of our knowledge, has
not been tackled yet. Discovering that some genes are s.e. only in some areas of the tissue
would play a core role in comprehending some fundamental biological mechanisms and, ul-
timately, discovering new ones. Even the very recent SPARK method for detecting s.e. genes
is not designed to state if the spatial expression activity of a gene is restricted to specific areas
of the tissue. With the existing statistical tools, one can approach this issue with a two-step
analysis, first clustering the image using BayesSpace or GIOTTO and then applying SPARK
to each of the discovered clusters. However, such heuristic procedure has some severe limi-
tations. First, repeating the tests in each of the image cluster requires to control for multiple
testing, for example, by controlling the false discovery rate (Benjamini and Hochberg (1995)).
Second, even after the s.e. genes are isolated, an additional clustering of the genes is necessary
to perform specific downstream analyses (Sun, Zhu and Zhou (2020), Svensson, Teichmann
and Stegle (2018)). Last, if indeed there are clusters of genes, such information should be
accounted for in the first step of the procedure, when the image is clustered. However, this is
something that cannot be accomplished with BayesSpace or GIOTTO.

Finally, research question (iii) has the goal of determining which genes are active in each
of the image cluster. Thanks to the spatial mapping of the spots, it will be possible to separate
the presence of spatial effects from the total variation of each gene, providing a more accurate
list of highly variable genes.

1.2. A co-clustering perspective. In this article we consider the problem of modelling
and clustering gene expression profiles in a tissue sample processed with a spot-based spatial
transcriptomic method, such as 10X Visium, and measured over a set of spatially-located
sites.

In the remainder of the article, we use “spots” to denote the spots in the tissue from which
RNA is extracted and “genes” to denote the variables measured in each spot, using a termi-
nology typical of the Visium platform. However, the method presented here is more general
and can be applied to any spatial transcriptomic technology and, more broadly, to any dataset
for which the rows or the columns are measured in some observational sites with known
coordinates.

We tackle the research questions, outlined above, as a single, two-directional clustering
problem: of the genes, using spots as variables, and of the spots, using genes as variables. This
kind of procedure is known in the literature as co-clustering (or block-clustering, Bouveyron
et al. (2019)) and denotes the act of clustering both the rows and the columns of a data
matrix, which, in this way, is partitioned into rectangular, nonoverlapping submatrices called
co-clusters (or blocks).

Bouveyron et al. (2019) distinguish between deterministic and model-based co-clustering
approaches. Model-based methods are designed to simultaneously perform the clustering
and reconstruct the probabilistic generative mechanism of the data. The model-based co-
clustering literature is centered around the Latent Block Model (LBM; Govaert and Nadif
(2013)), an extension of the standard mixture modelling approach when both rows and
columns of a data matrix are deemed to come from some underlying clusters. Thanks to
the ease of interpretation and to the raise of new advanced computational methods, the LBM
has been extensively explored as a tool for modelling continuous (Govaert and Nadif (2013);
Chapter 5), categorical (Keribin et al. (2015)), count (Govaert and Nadif (2010)), binary
(Govaert and Nadif (2008)) and recently, even functional data (Bouveyron et al. (2018),
Casa et al. (2021)). In addition, both frequentist (Bouveyron et al. (2018), Govaert and Nadif
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(2008)) and Bayesian (Keribin et al. (2015), Wyse and Friel (2012)) approaches have been
proposed for fitting these models. The conditional independence assumption of LBM states
that the observations within the same co-cluster are independent. Surely, this hypothesis is
computationally attractive, yet it is incompatible with the high correlation levels shown by
gene expression data (Efron (2009)).

Tan and Witten (2014) overcome the conditional independence assumption proposing a co-
clustering model based on the matrix variate Gaussian distribution (Gupta and Nagar (2000))
which accounts for the dependency across the rows and the columns in a block with two non-
diagonal covariance matrices. Their model represents a first attempt to extend k-means-type
algorithms for co-clustering to the case where the data entries in a block are not indepen-
dent. The estimation of the needed covariance matrices is challenging—a challenge that can
be overcome with the aid of a penalization term, such as the LASSO (Witten and Tibshirani
(2009)), to avoid singularity problems. However, with spatial data it is natural to leverage the
spatial dependencies observed in the data to aid the covariance matrix estimation.

Here, we propose SPARTACO (SPAtially Resolved TrAnscriptomics CO-clustering), a
novel co-clustering technique designed for discovering the hidden block structure of spa-
tial transcriptomic data. Since the spots in which gene expression is measured are spatially
located on a grid, our model expresses the correlation across transcripts in different spots as
a function of their distances. As a consequence, differently from the rest of the co-clustering
models proposed in the literature, SPARTACO divides the data matrix into blocks based on
the estimated means, variances and spatial covariances. In addition, we use gene-specific
random effects to account for the remaining covariance not explained by the spatial structure.

Although the published literature is not always clear about the distinction between co-
clustering and biclustering, in accordance with the recent works of Moran, Ročková and
George (2021) and Murua and Quintana (2021) here we adopt the following terminology:
both co-clustering and biclustering are families of techniques used to group the rows and the
columns of a data matrix. However, in biclustering the groups formed, called biclusters, can
take any possible shape, while co-clustering is limited to rectangular, nonoverlapping blocks.
In addition, biclustering algorithms do not necessarily allocate all the data entries into one
of the existent biclusters, and so some entries can be left unassigned. Although biclustering
methods are more flexible, the main advantage of co-clustering is that the returned blocks are
often easier to interpret both from a statistical and practical perspective.

1.3. Outline. The rest of the manuscript is structured as follows. Section 2 illustrates the
SPARTACO modelling approach and reviews some competing co-clustering models, high-
lighting the similarities and the differences with our proposal. Section 3 discusses some iden-
tifiability issues, illustrates our classification-stochastic EM (CS-EM) algorithm for parame-
ter estimation, proposes a measure to quantify the clustering uncertainty and derives a model
selection criterion based on the integrated completed log-likelihood (Biernacki, Celeux and
Govaert (2000)). Section 4 proposes five simulated spatial experiments of growing complex-
ity with whom we compare SPARTACO with other co-clustering models. Section 5 shows
how our proposal allows us to answer our three research questions using the human brain
tissue sample displayed in Figure 1. The manuscript is concluded by some considerations of
the possible future extensions.

2. The statistical model. Let X = (xij )1≤i≤n,1≤j≤p be the n × p matrix of a spatial
experiment processed by a spot-based spatial transcriptomic platform, that is, containing the
expression of n genes over a grid of p spots on the chip surface. The spatial location of the
spot j over the chip surface is known through its spatial coordinates sj = (sjx, sjy); we name
as S = (sj )1≤j≤p the p × 2 matrix containing the coordinates of the p spots. From this point
we assume that the data entries in X have been properly preprocessed, and so xij ∈ R for any
i and j (see Section 5).
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2.1. Model formulation. We assume there exist K clusters of rows of X and R clusters of
columns of X, forming a latent structure of KR blocks. The vectors of random variables Z =
(Zi )1≤i≤n and W = (Wj )1≤j≤p denote to which cluster the rows and the columns belong,
respectively. Thus, Ck = {i = 1, . . . , n : Zi = k} is the kth row cluster, with k = 1, . . . ,K ,
and Dr = {j = 1, . . . , p : Wj = r} is the r th column cluster, with r = 1, . . . ,R. The cluster
dimensions are nk = |Ck| and pr = |Dr |. The notation used to refer to subsets of X is the
following: Xkr = (xij )i∈Ck,j∈Dr is the kr th co-cluster (block), Xk. = (xij )i∈Ck,1≤j≤p is the
nk × p matrix formed by all the rows in Ck and X.r = (xij )1≤i≤n,j∈Dr is the n × pr matrix
formed by all the columns in Dr . When it comes to access the elements of a block, we use
the notation Xkr = (xkr

ij )1≤i≤nk,1≤j≤pr . So, the ith row vector and the j th column vector of

Xkr are, respectively, xkr
i. = (xkr

ij )1≤j≤pr and xkr
.j = (xkr

ij )1≤i≤nk
.

The vector xkr
i. contains the expression of the ith gene in the cluster Ck across the pr spots

in the cluster Dr . We model xkr
i. as

xkr
i. = μkr1pr + σkr,iε

kr
i. , εkr

i. ∼Npr (0,�kr ),(1)

�kr = τkrK
(
Sr;φr

) + ξkrIpr ,(2)

where μkr is a scalar mean parameter, 1pr is a vector of ones, σ 2
kr,i is a gene-specific vari-

ance and �kr is the covariance matrix of the columns. Following Svensson, Teichmann
and Stegle (2018) and Sun, Zhu and Zhou (2020), Formula (2) expresses �kr as a lin-
ear combination of two matrix terms: Ipr is a diagonal matrix of order pr , K(Sr;φr ) =
(k(‖sr

j − sr
j ′‖;φr ))1≤j,j ′≤pr

is the spatial covariance matrix, where k(·;φr ) is an isotropic
spatial covariance function (Cressie (2015)) parametrized by a vector φr and Sr = (sj )j∈Dr

is the submatrix of S containing the spots in Dr . The term isotropic denotes that the covari-
ance between two points j, j ′ ∈ Dr depends just on the distance between their two sites,
‖sr

j − sr
j ′‖. The positive parameters τkr and ξkr in Formula (2) handle the linear combination

between K and Ipr : the former measures the spatial dependence of the data, the latter is the
so-called nugget effect, a residual variance.

According to Section 2.4 of Cressie (2015), to select an adequate spatial covariance kernel
for the data, one can explore the empirical spatial dependency through the variogram and
then select a kernel from a vast list of proposals (see, e.g., Rasmussen and Williams (2006)).
However, under our model this strategy would be unfeasible because only the columns within
the same cluster are spatially dependent, so the selection of the spatial covariance kernel
should be performed simultaneously with the clustering of the data. As a compromise, SPAR-
TACO considers the same covariance model k(·;φr ) for every column cluster Dr ; the only
difference among the kernels of the clusters is the value of the model parameters φr .

The scale parameters σ 2
kr,i in (1) aim to capture the variability left unexplained by the spa-

tial covariance model (2) and, possibly, the extra source of variability due to the dependency
across genes. In the longitudinal data framework, De la Cruz-Mesía and Marshall (2006) and
Anderlucci and Viroli (2015) consider a random effect model to account for the systematic
dependency across subjects in the same group of study. We follow the same approach, and
we assume that every σ 2

kr,i is a realization of an inverse gamma distribution IG(αkr , βkr),
where αkr and βkr denote the shape and the rate, respectively. The inverse gamma is chosen
for its conjugacy with the Gaussian distribution and allows to derive the marginal probability
density of xkr

i. , that is,

(3) f
(
xkr
i. ; θkr ,φr

) = 1√
(2π)pr det(�kr)

�(α∗
kr,i)

�(αkr)

β
αkr

kr

β∗
kr,i

α∗
kr,i

,
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FIG. 2. DAG of the SpaRTaCo co-clustering model. Grey circle denotes the data, white circles are the latent
random variables and white rectangles are the model parameters.

where det(·) denotes the matrix determinant, α∗
kr,i = pr/2 + αkr and β∗

kr,i = (xkr
i. −

μkr1pr )
T �−1

kr (xkr
i. − μkr1pr )/2 + βkr . Note that this formulation corresponds to the prob-

abilistic model xkr
i. ∼ t2αkr

(μkr1pr , α
−1
kr βkr�kr ) and is similar to that employed to shrink

the gene variances in the popular limma model (Smyth (2004)). The set of parameters
θkr = {μkr, τkr , ξkr , αkr , βkr} is specific of the data into the (k, r)th co-cluster, while φr

is a parameter that is descriptive of the entire r th column cluster.
The model in Formula (1) can be rephrased with a probability distribution over the en-

tire kr th block, Xkr |�kr ∼ MVN (μkr1nk×pr ,�kr ,�kr ), where MVN denotes the matrix-
variate normal distribution and �kr = diag(σ 2

kr,1, . . . , σ
2
kr,nk

) is the (diagonal) covariance ma-
trix of the genes. A consequence of the matrix-variate normal model is that every row, col-
umn and submatrix of Xkr is Gaussian (Gupta and Nagar (2000)). For instance, the following
model formulation is equivalent to Formula (1):

xkr
.j |�kr ∼ Nnk

{
μkr1nk

, (τkr + ξkr)�kr

}
, Cov

(
xkr
.j ,xkr

.j ′
) = τkrk

(∥∥sr
j − sr

j ′
∥∥;φr

)
�kr ,

with j, j ′ ∈ Dr .
Last, the clustering labels Z and W are unknown independent random variables. Figure 2

represents the relations across the elements of the model with a DAG.

2.2. A comparison with other co-clustering models. We review in this section some ad-
vanced co-clustering techniques that have some similarities with our proposal. The goal is
to highlight, starting from the existing literature, how SPARTACO has been designed specif-
ically for detecting and clustering data based on their spatial covariance in some groups of
observational sites. With respect to the distinction between deterministic and model-based
co-clustering techniques we already discussed in Section 1.2, we choose to compare SPAR-
TACO only with model-based techniques because they offer a clear advantage in the inter-
pretation of the results. Some of the methods that we review here are named as biclustering
models, but in practice, they segment the data matrix into rectangular blocks.

Sparse Biclustering (SPARSEBC, Tan and Witten (2014)) extends the k-means algorithm
to the co-clustering framework. The model corresponds to a probabilistic assumption on the
block of the type Xkr ∼ MVN (μkr1nk×pr , Ink

, ξIpr ), where ξ is an unknown scale parame-
ter. In SPARSEBC the estimation of μkr , for any k and r , is regulated by a LASSO penaliza-
tion. We thus distinguish the sparse estimation from the case of null penalization (BC).

Matrix-Variate Normal Biclustering (MVNB, Tan and Witten (2014)) extends SPARSEBC
by taking a probabilistic model on the blocks of the type Xkr ∼ MVN (μkr1nk×pr ,�

MVNB
k ,



1450 A. SOTTOSANTI AND D. RISSO

�MVNB
r ), where both �MVNB

k and �MVNB
r are nondiagonal covariance matrices with, re-

spectively, nk(nk + 1)/2 and pr(pr + 1)/2 free parameters. Together with the LASSO pe-
nalization on the centroids, handled by a parameter λ, the authors deploy a graphical LASSO
penalization (Witten and Tibshirani (2009)) to practically solve the singularity problems in
the estimate of �MVNB

k and �MVNB
r . The penalization parameters involved are denoted by

ρ� and ρ�. With respect to the MVNB, SPARTACO has specific row and column covari-
ance matrices �kr and �kr for each block, whose structure is described in Section 2.1. The
total number of free parameter, KR|θkr | + R|φr |, does not grow either with n or p. As a
direct consequence, the parameter estimation of SPARTACO, conditioning on the clustering
labels Z and W , remains much less computationally prohibitive than the one of the MVNB,
specially when the sample size becomes considerably large.

Latent Block Model is a vast class of statistical models that can be seen as an extension of
the mixture model for co-clustering problems. The model for continuous data (Govaert and
Nadif (2013), Chapter 5) can be written using the Matrix Variate Normal representation as
Xkr ∼ MVN (μkr1nk×pr , Ink

, ξkrIpr ), and so it is based on the assumption that the data en-
tries in a block are independent, given the clustering labels (conditional independence). The
intrablock model is thus a special case of SPARTACO when �kr = I and τkr = 0 for all k and
r . However, the LBM is more general on the probabilitistic assumptions over the clustering
variables. In fact, it assumes Pr(Zi = k) = πk and Pr(Wj = r) = ρr , where (π1, . . . , πK)

and (ρ1, . . . , ρR) are probability vectors such that
∑K

k=1 πk = ∑R
r=1 ρr = 1, while SPAR-

TACO implicitly assumes that Pr(Zi = k) = 1/K and Pr(Wj = r) = 1/R for any k and r .
Supplementary Figure 1 (Sottosanti and Risso (2023)) gives a summary of the relations

across SPARTACO and the co-clustering models discussed in this section.

3. Inference.

3.1. Identifiability. The model as expressed in Formula (1) is not identifiable in the co-
variance term: in fact, for any a > 0, σ 2

kr,i · �kr = aσ 2
kr,i · �kr/a = σ̃ 2

kr,i · �̃kr . This issue
generates, in practice, an infinite number of solutions for the parameter estimate.

A typical workaround to get unique parameter estimates consists in setting the value of
some covariance parameters. In our model this would mean taking σ 2

kr,i = c, for one i in
{1, . . . , nk}, using an arbitrary positive constant c. Incidentally, this is equivalent to constraint
tr(�kr ), the trace of the matrix �kr (Allen and Tibshirani (2010), Caponera et al. (2017)).
However, we discard this solution as, under our model, the rows of the data matrix are in-
volved into a clustering procedure. Thus, it is not possible to define which i in a cluster should
take the constraint.

The solution we adopt for our model puts the identification constraint on �kr (Anderlucci
and Viroli (2015)). Since tr(�kr ) = pr(τkr + ξkr), we constrain the quantity τkr + ξkr = c�,
where c� is an arbitrary positive constant. Such constraint has a notable practical conse-
quence: in fact, once the estimate τ̂kr is determined within the constrained domain (0, c�),
then ξ̂kr is simply taken by difference as ξ̂kr = c� − τ̂kr . Hence, we can only interpret τ̂kr and
ξ̂kr in relation to each other and not in absolute terms. According to Svensson, Teichmann
and Stegle (2018), in our applications (Sections 4 and 5) we will consider the quantity τkr/ξkr

that we called spatial signal-to-noise ratio. This ratio is easily interpretable because it rep-
resents the amount of spatial expression of the genes in a cluster with respect to the nugget
effect.

3.2. Model estimation. To estimate SPARTACO, we propose an approach based on the
maximization of the classification log-likelihood, that is,

(4) logL(�,Z,W) =
n∑

i=1

K∑
k=1

1(Zi = k)

{
R∑

r=1

logf
(
x.r
i. ; θkr ,φr

)}
,
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where � = ⋃
r{

⋃
k θkr ,φr}, x.r

i. is the ith row of the matrix X.r and f (·; ·) is given in Formula
(3). Notice that the correlation across the columns does not allow to write the W explicitly.
This issue does not concern the Z , because the rows are independent.

Chapter 2 of Bouveyron et al. (2019) makes a clear distinction between the classifica-
tion and the complete log-likelihood (the latter includes an additional part related to the
distribution of the clustering labels). However, since SPARTACO implicitly assumes that
Pr(Zi = k) = 1/K and Pr(Wj = r) = 1/R for any k and r , then there is no practical dif-
ference between classification and complete log-likelihood.

The classification log-likelihood can be maximized with a classification EM algorithm
(CEM, Celeux and Govaert (1992)), a modification of the standard EM which allocates the
observations into the clusters during the estimation procedure. The CEM is an iterative algo-
rithm, which alternates between a classification step (CE Step), where the estimates of Z and
W are updated, and a maximization step (M Step), which updates the parameter estimates
of �. The benefits brought by such algorithm are particularly visible when complex models
as the LBM are employed, because the joint conditional distribution p(Z,W|X;�) is not
directly available (Govaert and Nadif (2013)).

Under SPARTACOa direct update of W through a CE step is unfeasible, due to the corre-
lation across the columns, and so the estimation algorithm requires some modifications. This
issue was already discussed by Tan and Witten (2014) for their MVNB model; however, their
solution consists in an heuristic estimation algorithm with no guarantees of convergence. We
propose to perform a stochastic allocation (SE step), where the column clustering configura-
tion W is sampled from a Markov chain whose limit distribution is the conditional distribu-
tion p(W|Z,X;�). This step can be performed using the Metropolis–Hastings algorithm. A
stochastic version of the EM algorithm was previously employed also for estimating the LBM
by Keribin et al. (2015), Bouveyron et al. (2018) and Casa et al. (2021). Because of the alter-
nation of a classification move, a stochastic allocation move and a maximization move, we
name our algorithm classification-stochastic EM (CS-EM). We denote with (�,Z,W)(t−1)

the estimate of the model parameters and of the clustering labels at iteration t − 1. At step t

the algorithm executes the following steps:

• CE Step: Keeping fixed (W,�)(t−1), update the row clustering labels with the following
rule:

Z(t)
i = arg max

k=1,...,K

∏R
r=1 f (x.r

i. ; θ (t−1)
kr ,φ(t−1)

r )∑K
k′=1{

∏R
r=1 f (x.r

i. ; θ (t−1)
k′r ,φ(t−1)

r )} , i = 1, . . . , n.

• SE Step: Keeping fixed Z(t) and �(t−1), generate a candidate clustering configuration
W∗ by randomly changing some elements from the starting configuration W (t−1). Let m

be the number of elements of W (t−1) that we attempt to change: m can be either fixed or
randomly drawn from a discrete distribution. To formulate W∗, we exploit two moves.

(M1) Two clustering labels g1 ∼ U({1, . . . ,R}) and g2 ∼ U({1, . . . ,R} \ {g1}) are
drawn. The candidate configuration W∗ is made by selecting m observations from W (t−1)

at random with label g1 and changing their label to g2. The quantity

q(W(t−1)|W∗)
q(W∗|W(t−1))

= pg1 !pg2 !
(pg1 − m)!(pg2 + m)!

is the ratio of transition probabilities employed by the Metropolis–Hastings algorithm to
evaluate W∗, where q(W∗|W(t−1)) and q(W(t−1)|W∗) are, respectively, the probabili-
ties of passing from configuration W (t−1) to W∗ and vice versa. This move almost coin-
cides with the (M2) move of Nobile and Fearnside (2007).
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(M2) For h = 1, . . . ,m, the clustering labels g1h ∼ U({1, . . . ,R}) and g2h ∼ U({1, . . . ,

R} \ {g1h}) are drawn. Let blr = ∑m
h=1 1(glh = r) for l = 1,2 and r = 1, . . . ,R. Then, the

candidate configuration W∗ is made by changing the labels of b1r observations selected at
random from the group r , when b1r > 0, to g2κ(r), where κ(r) = {h = 1, . . . ,m : g1h = r}.
The ratio of transition probabilities is

q(W (t−1)|W∗)
q(W∗|W(t−1))

= ∏
r:b2r>0

b2r !(pr − b1r )!
(pr − b1r + b2r )!

/ ∏
r:b1r>0

b1r !(pr − b1r )!
pr ! .

The choice between (M1) and (M2) is random. The candidate configuration W∗ is
accepted with probability min{1,A}, where A is the following Metropolis–Hastings ratio:

A = L(�(t−1),Z(t),W∗)
L(�(t−1),Z(t),W(t−1))

q(W (t−1)|W∗)
q(W∗|W(t−1))

.

Within the same iteration t , the SE Step can be run for an arbitrary large number of
times to accelerate the exploration of the space of clustering configurations and so the
convergence of the estimation algorithm to a stationary point. From our experience we
suggest to repeat the SE Step for at least 100 times per iteration.

• M Step: Using the rows in C(t)
k and the columns in D(t)

r , update the parameter estimates

θ
(t)
kr and φ(t)

r . The derivative of the log-likelihood with respect to (θkr ,φr ) does not lead
to closed solutions for updating the model parameters, and for this reason a numerical
optimizer must be applied. We exploit the L-BFGS-B algorithm of Byrd et al. (1995) im-
plemented in the stats library of the R computing language which allows constrained
optimization; this aspect is particularly useful to estimate τkr under the identifiability con-
straint described in Section 3.1.

Following Tan and Witten (2014), our implementation of the estimation algorithm alternates
each allocation step, either the CE Step and the SE Step with an M Step. As pointed out by
Keribin et al. (2015), the SE Step is not guaranteed to increase the classification log-likelihood
at each iteration, but it generates an irreducible Markov chain with a unique stationary dis-
tribution which is expected to be concentrated around the maximum likelihood parameter
estimate. The estimation algorithm must be run for a sufficiently large number of iterations.
We additionally implemented a convergence criterion that stops the algorithm if the increment
of the classification log-likelihood is smaller than a certain threshold for a given number of
iterations in a row. The final estimates of (�̂, Ẑ,Ŵ) are the values obtained at the iteration
from which (4) is maximum.

Notice that the criterion to form the co-clusters that SPARTACO uses has also a geomet-
rical interpretation; in fact, in the same way that k-means minimizes the Euclidean distance
between the observations and the centroids, SPARTACO minimizes the Mahalanobis distance
of the observations from the block centroids, embedding the spatial structure of the data into
the covariance matrix. Therefore, even when the data do not fully respect the probabilistic
assumptions, the model is still valid, as a distance-based clustering algorithm.

3.3. Measuring the clustering uncertainty. The proposed estimation procedure should be
run multiple times from different starting points to check if the algorithm encounters some
local maxima. In addition, the parallel runs can be used to quantify the uncertainty of the es-
timated co-clustering structure. In fact, if the analyzed data carry large evidence in favor of a
unique clustering configuration, then the parallel runs will return approximately the same row
and column clusters. If instead the clustering structure of the data that SPARTACO searches
for is not evident, then the multiple runs of the algorithm will tend to discover different but
equally likely solutions.
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Let us suppose to run the CS-EM algorithm S times on the same dataset: (�̂
(s)

, Ẑ(s)
,

Ŵ (s)
) is the solution to the parameter estimate returned by the sth run, for s = 1, . . . , S, and

�(s) = logL(�̂
(s)

, Ẑ(s)
,Ŵ(s)

). In addition, let s∗ = arg maxs �(s): since the co-clustering

structure (Ẑ(s∗)
,Ŵ(s∗)

) has found the largest evidence across the S runs on the current
data, it is the final estimate returned by the algorithm. The co-clustering uncertainty can

be thought of as a function of the distances between the final estimate, (Ẑ(s∗)
,Ŵ(s∗)

),

and the other estimates of lower evidence, (Ẑ(s)
,Ŵ(s)

), for s 	= s∗. Let Ik = {1(Ẑ(s∗)
i =

k)}1≤i≤n be the binary vector denoting which rows belong to the kth row cluster given
by the run s∗, for k = 1, . . . ,K , and Ihs(k) = [1{Ẑ(s)

i = hs(k)]1≤i≤n be the binary vec-
tor denoting which observations belong to the cluster hs(k), given by the sth run, where
hs(k) = arg maxh=1,...,K

∑n
i=1 1(Z(s∗)

i = k,Z(s)
i = h), and s 	= s∗. In addition, let us con-

sider the weights ωs = 1/(�(s∗) − �(s)). The uncertainty of the row cluster k is measured
as

(5) εrows
k =

∑
s 	=s∗ ωsCER(Ik,Ihs(k))∑

s 	=s∗ ωs

,

where CER(·, ·) denotes the clustering error rate (Witten and Tibshirani (2010)), an index
that measures the disagreement between a reference and an estimated clustering configura-
tion: the closer is CER to 0, the larger is the agreement between the true and the estimated
clusters. The {ωs}s 	=s∗ give a large weight to the CER between Ik and Ihs(k) when �(s∗) −�(s)

is small and vice versa. The reason is intuitively that if both ωs and CER(Ik,Ihs(k)) are large,
then there are two considerably different clustering configurations that yield approximately
the same log-likelihood value. Thus, the clustering structure of the data is uncertain. If in-

stead ωs is small, the difference between Ẑ(s∗)
and Ẑ(s)

is, in practice, irrelevant, because

the evidence arising from the data clearly leans in favor of Ẑ(s∗)
.

Formula (5) can be applied also for computing the uncertainties of the column clusters

(εcols
1 , . . . , εcols

R ), just replacing Ẑ(s)
with Ŵ(s)

. The uncertainty measure introduced here
can be interpreted similarly to the CER index: the closer are εrows

k and εcols
r to 0, the larger is

the evidence of a unique co-clustering structure of the data.

3.4. Model selection. SPARTACO can be run with different spatial covariance models
k(·; ·) and with different combinations of K and R. We consider the problem of selecting the
best model for the data, both in terms of the number of clusters and the spatial covariance
function, using an information criterion. The most common criteria, the AIC and the BIC,
cannot be derived under Model (1) because the likelihood of the data p(X;�), marginalized
with respect to the latent variables Z and W , is not available in closed form.

In this work we propose to guide the model selection using the integrated completed log-
likelihood (ICL, Biernacki, Celeux and Govaert (2000)). The ICL is a well-established crite-
rion for selecting the number of clusters (Bouveyron et al. (2019)) which has become popular
in the co-clustering framework for selecting the size of LBM (Bouveyron et al. (2018), Casa
et al. (2021), Keribin et al. (2015)). Under Model (1)–(2), its expression is

(6) ICL = logL(�̂, Ẑ,Ŵ) − n logK − p logR − 4KR + dim(φ)R

2
lognp,

where dim(φ) is the dimension of the parameter vector φr which does not depend on r . The
derivation of (6) is described more in details in Supplementary Material Section 1. Opera-
tively, the best model from a list of candidates corresponds to the one with the largest value
of (6).
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In the presence of mixed effects, Delattre, Lavielle and Poursat (2014) argue that the actual
sample size is not trivial to define, and thus the classical information criteria need to be mod-
ified. In particular, they derive an alternative formulation of the BIC which includes a term
that depends only on the parameters involved with the random effects. However, their model
specification assumes that the marginal distribution of the data with the random parameters
integrated out cannot be derived in closed form. Although the presence of the random vari-
ances σ 2

kr,i makes SPARTACO a random effect model, the integration of σ 2
kr,i from the density

function of xkr
i. |σ 2

kr,i leads to the marginal density (3). For this reason we do not implement
any modification based on the random effects into our information criterion (6).

4. Simulation studies.

4.1. Simulation model. We study the performance of SPARTACO with five simulated
spatial experiments that recreate some possible scenarios that can be found in real data.
We generate the latent blocks using the matrix-variate normal distribution (Gupta and Na-
gar (2000)) as follows: given the number of row and column clusters K true and Rtrue (for
convenience, we considered here K true = Rtrue = 3 in every simulation experiment), the
clustering labels Z true and W true and the clusters Ctrue

k = {i = 1, . . . , n : Z true
i = k} and

Dtrue
r = {j = 1, . . . , p : W true

j = r}, the (k, r)th block is drawn from

(7) Xkr ∼ MVN
(
μtrue

kr 1nk×pr ,�
true
kr ,�true

kr

)
, �true

kr = τ true
kr Ktrue

r

(
Sr;φtrue

r

) + ξ true
kr Ipr ,

where Ktrue
r (Sr;φr ) = (ktrue

r (‖sr
j − sr

j ′‖;φtrue
r ))1≤j,j ′≤pr

and ktrue
r (·;φtrue

r ) is an isotropic spa-

tial covariance kernel parametrized by φtrue
r . Note that, differently from (2), the presence of

the subscript r into the kernel matrix Ktrue
r denotes that the spatial covariance function can be

different for any column cluster. In our simulations we employed the Exponential kernel with
scale θE for the columns in Dtrue

1 , the Rational Quadratic kernel with parameters (θR,αR)

for the columns in Dtrue
2 and the Gaussian kernel (known also as Squared Exponential) with

scale θG for the columns in Dtrue
3 . Their formulation is reported in Supplementary Material

Section 2, and it is further discussed in Chapter 4 or Rasmussen and Williams (2006). The
simulation model (7) implies the following marginal distributions of the genes and of the
spots:

xk.
i. |Z true,W true ∼ Np

{(
μtrue

k1 1p1, . . . ,μ
true
k3 1p3

)
,�true

ii diag
(
�true

kr

)
r=1,2,3

}
,(8)

x.r
.j |Z true,W true ∼ Nn

{(
μtrue

1r 1n1, . . . ,μ
true
3r 1n3

)
, ctruediag

(
�true

k

)
k=1,2,3

}
,(9)

where �true
ii is the variance parameter of the ith row and does not depend on k and the notation

diag(�true
kr )r=1,2,3 denotes a block diagonal matrix formed by the matrices �true

1 , . . . ,�true
3 .

Notice that, from Formula (9), the marginal distribution of the spots does not carry any
information on the column clusters. The cross-covariance matrix of two rows i, i ′ ∈ Ctrue

k

is Cov(xk.
i. ,xk.

i′.) = �true
k,ii′diag(�true

kr )r=1,2,3, and the cross-covariance of two columns j, j ′ ∈
Dtrue

r is Cov(x.r
.j ,x.r

.j ′) = diag{τ true
kr ktrue

r (‖sr
j − sr

j ′‖;φtrue
r )�true

k }k=1,2,3.
We took the sets of spatial coordinates (S1,S2,S3) from the brain tissue sample of the sub-

ject with ID 151507 contained in the R package spatialLIBD and processed with Visium.
As we briefly discussed in Section 1.1, the spots in these experiments have been manually
annotated into layers. We extracted 200 spots from each of the three layers appearing in
the top-right region of the image. The resulting map of 600 spots is shown in the left plot
of Figure 3; the clustering labels W true correspond to the labels assigned with the manual
annotation. Note that, although we took the spot annotation from the real data, the image
clusters in the simulation experiments have a substantially different meaning: in fact, under
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FIG. 3. Left: Map of the spots used to generate the simulation experiments, extracted from the subject 151507
contained in the package spatialLIBD. The clusters are of equal size, p1 = p2 = p3 = 200. Right: Compari-
son of the covariance functions used in the three clusters of spots. When r = 1, the covariance is Exponential with
scale θE = 50, when r = 2, it is Rational Quadratic with θR = 50 and αR = 2 and when r = 3, it is Gaussian
with scale θG = 70.

the simulation model (7) they denote regions of the tissue in which some genes are expressed
with specific spatial variation profiles, while, in the real data, the manually annotated re-
gions identify the morphological structure of the tissue. In addition, the right plot of Figure 3
shows the covariance functions used for the simulations. We set the covariance parameters
(θE, θR,αR, θG) according to how much the clusters extend over the plane: the covariance
function of Dtrue

1 is steeper than the one of Dtrue
2 because Dtrue

1 covers a smaller distance. Be-
cause Dtrue

3 is made of two distinct groups of spots appearing in the top and in the bottom of
Figure 3 (left), we specify ktrue

3 (·; ·) in such a way that only the spots within the same group
are spatially correlated, while spots from different groups are poorly correlated. Details on
the covariance parameters are given in the caption of Figure 3.

Last, we set the values of the spatial signal-to-noise ratios τ true
kr /ξ true

kr . The additional iden-
tifiability constraint τ true

kr + ξ true
kr = ctrue

kr leads to a unique value of the parameters τ true
kr and

ξ true
kr . Note that, due to the identifiability issue described in Section 3.1, which holds also for

the simulation model, the value assigned to ctrue
kr is in practice irrelevant. For this reason and

without loss of generality, we assumed ctrue
kr = ctrue = 10, for any k and r . In our simulations

we considered three cases: (i) no spatial effect, τ true
kr /ξ true

kr = 0, (ii) the spatial effect is as
much as the nugget effect, τ true

kr /ξ true
kr = 1 and (iii) the spatial effect is considerably larger

than the nugget effect, τ true
kr /ξ true

kr = 3. Finally, we set μtrue
kr = 0 to test if SPARTACO is able

to recover the co-clusters using the covariance of the data without being driven by the effect
of the mean.

4.2. Competing models and evaluation criteria. We fit SPARTACO on the simulated data
taking k(·; ·) in Formula (2) as the exponential kernel which has a lower decay than the more
common Gaussian kernel considered by Svensson, Teichmann and Stegle (2018) and Sun,
Zhu and Zhou (2020). The estimation is carried running the algorithm described in Sec-
tion 3.2 five times in parallel to avoid local maxima. The procedure is run for 5000 iterations,
and if the classification log-likelihood function is still growing, it is run until reaching 10,000
iterations. In addition to SPARTACO, we consider also the following co-clustering models:

• two independent K-MEANS, applied separately to the rows and to the columns of the data
matrix, using the R function kmeans;

• the biclustering algorithm BC and its sparse version SPARSEBC with λ = 1,10,20, using
the R package sparseBC;
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• the matrix variate normal algorithm MVNB with the following setups: 1) λ = 1, ρ� =
ρ� = 0.25, 2) λ = 10, ρ� = ρ� = 2.5 and 3) λ = 20, ρ� = ρ� = 5. We had to implement
a slight modification of the function matrixBC contained in the R package sparseBC,
as its original form could not handle the computation of the logarithm of the determinant
of some matrices;

• LBM, using the R package blockcluster.

Tan and Witten (2014) do not give any indication on how to select the penalization parameters
ρ� and ρ� of MVNB. In their simulation experiments and real data applications, they simply
set λ to be much larger than ρ� and ρ�. For this reason, in our simulations we fit MVNB

with three setups, where the λ values are the same of SPARSEBC, and ρ� and ρ� are taken
equal to a quarter of λ. We measure the clustering accuracy by comparing the estimated row
and column clusters with the true ones using the CER. In this section we do not focus on
the parameter estimates returned by SPARTACO, because the principal goal is evaluating the
classification accuracy of the models. We leave the interpretation of the parameter estimates
to Section 5.

4.3. Simulation 1. We generated nine blocks of size nk = 200 × pr = 200 for every k

and r . We assume that the variances and covariances of the genes do not change with respect
to the spot clusters; thus, �true

kr = �true
k for all r . We draw �true

k as follows:

(10)
�true

1 ∼Wi(210,0.03I200), �true
2 ∼ Wi(230,0.05I200),

�true
3 ∼Wi

(
200,�true

1 /150
)
,

where Wi(a,b) denotes a Wishart distribution with degrees of freedom a and scale matrix
b. Generating the covariance matrices from a Wishart distribution ensures that the draws are
positive definite. The simulation setup in Formula (10) was selected after both numerical and
graphical evaluations. More details on the motivations, which led to this setup, are given in
Supplementary Material Section 3.

We designed a spatial experiment in which three clusters of genes have a grade of spa-
tial expression that changes in three different areas of the tissue sample. The tessellation of
the data matrix into blocks and the values of the spatial signal-to-noise ratios appear in Fig-
ure 4(a). Figure 5 displays a spatial experiment generated under this framework to show how
the average gene expression changes across the nine blocks. For example, in the left panel
(k = 1) there is an evident spatial expression across the spots from clusters r = 2 and r = 3,
while the spots in r = 1 are randomly positive or negative, due to the absence of spatial de-
pendency. Different spatial expression profiles across the image are distinguishable also in
real data, as seen in Supplementary Figure 3, which displays the expression of three genes on
the subject 151507. The real and simulated experiments appear very similar, confirming that
our simulations are realistic and can be used for testing methods designed for 10X Visium
data. We simulated 10 replicates of this experiment, and we fitted the co-clustering models
listed in Section 4.2 using K = R = 3. The boxplots of the row and the column CER over
the 10 replicates appear in the first line of Figure 6. SPARTACO outperforms the competing
models and leads to no clustering errors. Good results on the rows are achieved also by the
LBM, while on the columns the k-means type algorithms (K-MEANS, BC and SPARSEBC)
and the MVNB with ρ� = ρ� = 5 perform better than the other competitors. A further con-
firmation of the accuracy of SPARTACO for modelling this spatial experiment comes from
the value of estimated clustering uncertainties which are εrows

k < 0.001 and εcols
r < 0.001 for

every k and r . A graphical representation of these quantities across the 10 replicates is given
in Supplementary Figure 4.
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FIG. 4. Representation of the latent block structures used to generate the simulation experiments. All the blocks
in Panels (a)–(c) have the same size and are colored according to the value of the spatial signal-to-noise ratio
τ true
kr /ξ true

kr . The setup in Panel (a) is used in Sections 4.3 and 4.6, Panel (b) is used in Section 4.4, Panel (c) in
Section 4.5 and Panel (e) in Section 4.7. Panel (d) gives the hidden block structure of Simulation 4.7. Within the
columns 1 and 2, the row clusters have the same size (200), while in the third column it is n13 = 100, n23 = 200
and n33 = 300. The numbers from 1 to 6 on the right denote the alternative clusters C∗true

1 , . . . ,C∗true
6 .

FIG. 5. Examples of a spatial experiment generated under Simulation 1. The spots are coloured according to
n−1
k (Xk.)T 1nk , the average expression of the kth gene cluster. The three spot clusters are displayed with different

symbols. The co-clusters with no spatial expression are (k = 1, r = 1), (k = 2, r = 2) and (k = 3, r = 3), and the
co-clusters with the largest spatial signal-to-noise ratio are (k = 1, r = 2), (k = 2, r = 3) and (k = 3, r = 1).
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FIG. 6. Results from Simulations 1–4. For each scenario, we generated 10 datasets and we applied the co-clus-
tering models listed in Section 4.2. Every figure gives the boxplots of the CER obtained on the rows and on the
columns.
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This experiment has demonstrated that the presence of spatial covariance patterns, if not
properly accounted for, heavily impacts on the performance of the standard co-clustering
models. Since the MVNB is designed to flexibly estimate the covariance of the blocks, in
theory it should be the best candidate for such complex experiments. However, the formu-

lation of �̂
MVNB

k and �̂
MVNB

r is too generic for capturing the spatial correlation across the
spots, causing a poor clustering result. As a confirmation of this statement, we notice that the
smallest classification error made by MVNB is reached when the penalization parameters ρ�

and ρ� are large, leading the estimated matrices �̂
MVNB

k and �̂
MVNB

r to be diagonal.
As a second step of this experiment, we tested the model selection criterion based on

the ICL proposed in Section 3.4. Using the same 10 replicates of the experiment, we ran
SPARTACO with K and R taking values in {2,3,4}. Supplementary Figure 5 shows that
the proposed ICL always selects the correct model dimension, while the classification log-
likelihood favors models with a larger number of co-clusters than the truth.

While the ICL criterion accurately selects the number of co-clusters, it is a computationally
expensive procedure due to the large number of times that the estimation must be run. Hence,
we compared our model selection method with two faster alternatives: the first selects the
number of row and column clusters separately by combing a dimension reduction method
with K-MEANS (details are given in Supplementary Material Section 4); the second, proposed
by Tan and Witten (2014), performs a 10-fold cross-validation using SPARSEBC; a function
that implements this last method can be found in the R package sparseBC. The first criterion
selected six row clusters on the 90% of the replicates of Simulation 1 and five clusters in the
remaining 10%; on the columns, it selected three clusters on the 33% of the replicates and
four clusters on the remaining 77%. The second criterion was applied with K and R taking
values in {2, . . . ,6} and fixing λ = 10, but it has revealed to be inadequate for this kind of
data, as it selected K = 6 and R = 6 on every replicate of the experiment.

4.4. Simulation 2. The second simulation experiment differs from the first in the val-
ues of the spatial signal-to-noise ratios which are now taken as in Figure 4(b). For any r

the signal-to-noise ratios {τ true
kr /ξ true

kr , k = 1, . . . ,K true} have all the same value. As a con-
sequence, �true

kr = �true
r for any k. Under the current setup the marginal distribution of a

row i ∈ Ctrue
k , under the data generating model given in Formula (8), does not depend on

k, and so it is not informative of the row clustering. The only discriminating facets are the
cross-covariances of the rows and of the columns which carry the information about the row
clusters through the matrices �true

k . This framework is thus meant to evaluate the performance
of SPARTACO when all the genes have the same spatial expression profiles across the tissue.
A representation of a spatial experiment generated under this framework is given in the top
row of Supplementary Figure 6.

We ran the co-clustering models using K = R = 3 on 10 replicates on the proposed ex-
periment; the results are displayed in the second line of Figure 6. Our model outperforms
the competitors: on the rows the median CER from SPARTACO is less than 0.2, while on
the columns it returns a perfect classification on all replicates. The estimated row clustering
uncertainty is low (εrows

k < 0.15, ∀k), while the column clustering uncertainty is practically
null. Details are given in the second row of Supplementary Figure 4. Both Simulations 1 and
2 have shown that SPARTACO works properly, even if the spatial covariance function em-
ployed by the fitted model in Formula (2) does not match the covariance functions of the data
generating process. In particular, Simulation 2 has highlighted this remarkable result because
the only cluster of columns for which the spatial covariance function is correctly specified is
r = 1, which, however, is devoid of any spatial effect, as τ true

k1 = 0 for any k.
The best competitor on the rows is the LBM with a median CER of 0.44. On the columns

the best results are from the k-means type models or, alternatively, from the MVNB with
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λ = 20 and ρ� = ρ� = 5. Considerable results are also obtained with the LBM; however,
its classification accuracy is more variable. This experiment hence confirms what we have
already observed in Simulation 1, namely, that, in the presence of spatial covariance patterns
in the data, the model of Tan and Witten (2014) tends to fail in recovering the correlation
structure, at least in our simulation setup. This is demonstrated by the diagonal estimated

covariance matrices {�̂MVNB

k , k = 1,2,3} and {�̂MVNB

r , r = 1,2,3}.

4.5. Simulation 3. The third simulation experiment assumes that the spatial signal-to-
noise ratio τ true

kr /ξ true
kr is constant across the blocks within the same row cluster k; as a conse-

quence, τkr = τk for any r . This case is illustrated in Figure 4(c). Notice, for example, that the
rows in Ctrue

1 are not spatially expressed in any of the three column clusters. Under the current
simulation setup, the marginal distribution of a row i ∈ Ctrue

k , given in Formula (8), is infor-
mative on the column clusters only through the different spatial kernels ktrue

r (·;φtrue
r ), while,

as already discussed in Section 4.1, the marginal distribution of a column j ∈ Dtrue
r is never

informative on the column clusters. The cross-covariances of the rows and of the columns are
informative of both rows and column clustering. Under this framework it is challenging to
determine the image areas with spatial interaction, because all the genes in a cluster Ctrue

k are
spatially expressed with the same intensity over the whole tissue. An example of a spatial ex-
periment generated under this simulation setup is given in the bottom row of Supplementary
Figure 6.

We ran the co-clustering models on 10 replicates of the experiment using K = R = 3;
the results appear in the third line of Figure 6. On the rows, SPARTACO outperforms the
competitor models returning a CER of zero for all replicates. On the columns its clustering
accuracy is highly variable: the median CER is 0.21, the first and the third quartiles are 0.08
and 0.25 and extremes are 0 and 0.36. The competitor models and, in particular, the k-means
type models, are substantially less variable than SPARTACO. Their median column CER is
0.13. However, none of them ever returns a perfect classification.

Even if SPARTACO has returned unstable results on the columns, the advantages brought
by our model against the competitors are many and are particularly visible from the results
on the rows. The column clustering changes considerably across the replicates because, in the
current setup, our estimation algorithm is more sensible to the starting points. This aspect is
highlighted also by the estimated column clustering uncertainties εcols

r , whose values across
the 10 replicates are now mainly between 0.3 and 0.4 (see Supplementary Figure 4). From our
experience, if independent runs of the estimation algorithm reach distant stationary points,
both the number of starting points and the number of iterations of the SE Step should be
increased to favor a faster exploration of the space of the configurations.

4.6. Simulation 4. Up to now, we built the simulation experiments under the framework
in which SPARTACO is designed to work properly, that is, the case where the genes/spots
in a cluster are correlated only with the other genes/spots of the same cluster. In this section
we violate this assumption, and we design a spatial experiment where both the genes and the
spots are correlated also with genes and spots from other clusters. This experiment aims to
study the effects of an additional dependency structure across the data that is not accounted
by the fitted model.

Let Xs be a 600 × 600 spatial experiment made of nine equally-sized blocks, generated
as in Simulation 1, and Xb ∼ MVN (0,�b,�b). Both �b and �b are squared matrices of
size 600: the first is drawn from �b ∼W(600,0.015I600), the second is �b = τbKb(S;σb)+
ξbI600, where Kb(S;σb) = (kb(‖sj − sj ′‖;σb))1≤j,j ′≤600 and kb(·;σb) is a Gaussian kernel
with scale σb. We set τb = ξb = ctrue/2 and σb = 50. The final simulation experiment is made
as follows: X = λsXs + λbXb, where λs, λb ≥ 0. We generated 10 replicates of the current
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experiment, each time drawing first the matrices Xs and Xb and then combining them to form
X. Supplementary Figure 7 shows a single realization of Xs , Xb and X using λs = λb = √

0.5.
This value satisfies the constraint λ2

s + λ2
b = 1 that we imposed to keep the variance of the

current experiment comparable with the previous experiments proposed in this work.
We ran the co-clustering models using K = R = 3; results appear in the last row of Fig-

ure 6. Despite the additional correlation structure in the data brought by the nuisance signal
Xb, SPARTACO outperforms its competitors on both the row and the column clustering. In
the right plot the CER boxplots are more variable than in the left plot; therefore, the nuisance
component has affected more the column than the row clustering of the employed models.
Among the competitors, K-MEANS and MVNB with λ = 10 and ρ� = ρ� = 2.5 are the least
affected by the nuisance: the former because it performs the clustering on the two dimensions
of the data matrix separately, the latter because it regulates the estimate of the row and col-
umn covariances with a moderate shrinkage factor. The effect of the additional dependency
structure is visible also on the distributions of εrows

k and εcols
r which are displayed in the last

line of Supplementary Figure 4: over the 10 replicates, the row clustering uncertainties spread
between 0 and 0.17 and column uncertainties between 0 and 0.5.

4.7. Simulation 5. In the last experiment we intentionally violate two important assump-
tions made by SPARTACO: the first states that the latent block structure of an experiment
corresponds to a segmentation of the data matrix into K row clusters and R column clus-
ters, the second states that the spatial covariance functions change only across the spots and
not across the genes. For instance, we generate a spatial experiment, creating first the Rtrue

column clusters, and then generating the K true row clusters independently for each column
cluster. From a biological perspective this setup simulates the case where the expression pro-
files of some genes are similar only in some specific areas of the tissue sample. In addition,
following the discoveries of Svensson, Teichmann and Stegle (2018) and Sun, Zhu and Zhou
(2020) that different genes are s.e. according to different spatial covariance functions, we
consider a data generating model where the spatial kernels change with respect to the gene
cluster index k and no longer with respect to the spot cluster index r .

Let Ctrue
kr and Dtrue

r be the actual row and column clusters, with k = 1, . . . ,K true and
r = 1, . . . ,Rtrue, where Ctrue

kr = {i = 1, . . . , n : Z true
ir = k} is the kth row cluster within

the r th column cluster, and |Ctrue
kr | = nkr . Under the current setup, we draw Xkr ∼

MVN (μkr1nk×pr ,�
true
kr ,�true

kr ), where the covariance across the spots is now equal to
�true

kr = τ true
kr Ktrue

k (Sr;φtrue
k ) + ξ true

kr Ipr . Notice that, differently from Section 4.3, the covari-
ance matrices of the rows �true

kr change with respect to r because the number of observations
in the cluster is nkr (and no longer nk). In addition, the model assumes that the kr th block
has mean μkr . The tessellation of the data matrix into blocks is shown in Figure 4(d). The
size of the clusters is nkr = 200 for k = 1,2,3 and r = 1,2, while n13 = 100, n23 = 200 and
n33 = 300. The covariance matrices of the rows are drawn as follows:

�true
1r ∼ Wi(n1r + 10,0.03In1r

), �true
2r ∼ Wi(n2r + 30,0.05In2r

),

�true
3r ∼ Wi

(
n3r ,�

∗
3r/150

)
,

where �∗
3r ∼ Wi(n3r + 10,0.03In3r

). Notice that this setting is nothing but a generalization
of what appears in Formula (10). Calling μtrue

k. = (μtrue
k1 ,μtrue

k2 ,μtrue
k3 ), we set the mean values

equal to μtrue
1. = (−3,0,3), μtrue

2. = (3,−3,0) and μtrue
3. = (0,3,−3). Finally, the employed

spatial signal-to-noise ratio values {τkr/ξkr} are shown in Figure 4(e).
To facilitate the model evaluation and the interpretation of the results, we assign to every

row i an alternative clustering label Z∗
i

true such that Z∗
i

true = Z∗
i′

true if i, i′ ∈ (Ctrue
k11 ∩ Ctrue

k22 ∩
Ctrue

k33 ) for some k1, k2, k3 ∈ {1,2,3}. In words, this means that the new clusters are formed
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by the rows that belong to the same cluster in all of the three column clusters. The new row
clustering labels appear on the right side of Figure 4(d). In our experiment, every Z∗

i
true ∈

{1, . . . ,6}, and C∗
b

true = {i = 1, . . . , n : Z∗
i

true = b} is the bth alternative cluster with size
|C∗

b
true| = 100, for b = 1, . . . ,6.
To reduce the computational cost spent on the simulation, we generated a single replicate

of the experiment, and we fitted SPARTACO, using K = 3, . . . ,9, while the number of col-
umn clusters is kept equal to its real value, R = 3. Supplementary Figure 8 (a) shows that
the ICL criterion selects K = 8 as the optimal model dimension; using the log-likelihood,
we would have wrongly picked K = 9, confirming the importance of using a suitable infor-
mation criterion to drive the model selection. In addition, one could consider also a model
with a smaller number of row clusters: for example, K = 5 looks also a reasonable choice,
because it corresponds to a local maximum. SPARTACO with K = 8 returns a row CER of
0.028 and a column CER of 0. In details, the model correctly recovers the gene clusters 2, 4,
5 and 6, while the genes in C∗

1
true and C∗

3
true are split into two separate groups. The estimated

clustering uncertainty is εcols
r < 0.004 for r = 1,2,3, while on the rows it varies between 0

and 0.19. Thus, some of the genes clusters are clearly visible, while others are unstable. As
a comparison, we give also the results using K = 5. The CER on the rows is 0.056, and it is
0 on the columns; the estimated clustering uncertainties are εrows

k < 0.001, for k = 1, . . . ,5,
and εcols

r < 0.06, for r = 1,2,3. The fact that the row clusters of the model with K = 5 are
more stable than the ones with K = 8 gives additional support to the idea of selecting the
model with a smaller number of blocks, but both models yield reasonably good results.

We finally run the competing models using K = 5 and R = 3; results are shown in Supple-
mentary Figure 8(b). Thanks to the difference in mean across the blocks, all the competing
models can clearly distinguish the clustering structure of the spots. However, due to the spa-
tial dependency effects, their performance in clustering the genes is poor, confirming, once
again, the improvement brought by SPARTACO.

5. Application. In this section we analyze the human dorsolateral prefrontal cortex sam-
ple from the subject 151673 studied by Maynard et al. (2021) that we briefly described in
Section 1.1 and shown in Figure 1. The dataset has 33,538 genes measured over 3639 spots.
Similarly to 10X scRNA-seq protocols, 10X Visium yields unique molecular identifier (UMI)
counts as gene expression values.

As a first step, we sought to exclude uninformative genes and reduce the analysis to a
lower dimensional problem. We applied the gene selection procedure for UMI count data,
proposed by Townes et al. (2019), that is, we fit a multinomial model on every vector of gene
expression and compute the deviance. Based on the criterion that large deviance values are
associated to informative genes, we kept the first 500 genes and discarded the remaining ones.
Supplementary Figure 9 shows that the deviance, which is very high for the top genes, reaches
a plateau after 200 genes. To normalize the data, we computed, for each selected gene, the
deviance residuals based on the binomial approximation of the multinomial distribution, as
done in Townes et al. (2019). The result of this procedure is the expression matrix X whose
entries are xij ∈ R and whose row vectors xi. yield approximately symmetric histograms.
Boxplots of the transformed gene expression vectors are given in Supplementary Figure 10,
where it is shown also that there is no practical difference between using the binomial or the
Poisson for computing the the residuals.

We fitted SPARTACO with all the configurations in {(K,R) : K = 2, R = 7, . . . ,12}, start-
ing the estimation of each model from five different initial points. More details about the setup
of the estimation algorithm and the computational costs are given in Supplementary Mate-
rial Section 5. The range of column cluster values reflects the number of biological layers
that appear in Figure 1. As we already mentioned in Section 1.1, SPARTACO performs a
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FIG. 7. Results on the human dorsolateral prefrontal cortex data. The first row displays the 3639 spots: in Panel
(a) they are colored according to the clusters returned by SPARTACO and shaped according to the clustering
uncertainty εcols

r ; in Panel (b) they are colored according to the average gene expression in the estimated cluster
C2. Panels (c) and (d) represent the data matrix tessellated into the 18 discovered blocks. Both the genes and the
spots are reordered based on the estimated clusters for visualization purposes. The graphs are colored according
to the estimated mean μ̂kr (c) and to the estimated spatial signal-to-noise ratio τ̂kr /ξ̂kr (d).

substantially different image clustering than BayesSpace or GIOTTO; thus, we do not ex-
pect the clusters discovered by SPARTACO to match the cortical layers. However, we believe
that their number could still be indicative of the biological diversity of this specific area.
Supplementary Figure 11 (a) gives the ICL values of the models with K = 2. Although our
criterion selects K = 2 and R = 12, we believe that the local maximum in correspondence
of (K = 2,R = 9) represents also a valid solution. In fact, a large value of R would result
in too many small clusters, complicating the biological interpretation. Furthermore, we fixed
R = 9, and we explored the options K ∈ {1,3,4} to investigate the absence of gene clusters
(K = 1) and the presence of multiple clusters. However, the ICL selects K = 2. Figure 7(a)
displays the tissue map colored according to the estimated clusters. The White Matter spots
are covered by clusters D1, D7, D8 and D9; this last one is placed at the border between the
White Matter and Layer 6. The remaining clusters cover the surface within the Layers 2–6.
Last, Layer 1 is covered by D4 and, mostly, by D5. Incidentally, we note that the spot clusters
within the White Matter are the ones with the smallest grade of uncertainty (see the right plot
in Supplementary Figure 11 (b)).
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As for the row clustering, 109 of the genes in Cluster C2 (n2 = 129) were ranked within
the top 200 most informative genes by the deviance procedure of Townes et al. (2019). Fig-
ure 7(b) displays the spots colored according to n−1

2 (X2.)T 1n2 , the average expression of the
genes in C2 from which it emerges that the expression tends to be larger within the White
Matter than in the rest of the cortical area. Panels (c) and (d) in Figure 7 display the esti-
mated means μ̂kr and spatial signal-to-noise ratios τ̂kr/ξ̂kr within each block. It appears that
the spatial activity of the genes in C2 is largely evident within the internal area of the White
Matter (τ̂21/ξ̂21 = 3.45) and progressively decreases approaching Layer 6 (τ̂28/ξ̂28 = 1.55
and τ̂29/ξ̂29 = 0.58). These genes show also a moderate spatial expression on the rest of the
cortical area (τ̂2r/ξ̂2r ∈ [0.39,0.9], for r = 2, . . . ,6). Last, cluster D7 denotes a restricted
group of spots that are present both within and outside the White Matter, with a nonnegligi-
ble spatial effect (τ̂27/ξ̂27 = 1.60). On the contrary, the genes in C1 (n1 = 371) show a small
spatial variation in every spot cluster expect in D1 (τ̂11/ξ̂11 = 0.71 and τ̂1r/ξ̂1r ≤ 0.31 for all
r 	= 1), suggesting a constant variation of these genes throughout the cortical area. In fact,
C1 is enriched for housekeeping genes with respect to C2 (chi-square test, p = 2.6 × 10−4).
Housekeeping genes are maintainers of the cellular functions, and their activity is not re-
stricted to a specific cell type (Eisenberg and Levanon (2003)). It is, therefore, expected that
these genes show a small spatial variation across the tissue. We notice also from Figure 7(c)
that the estimated means {μ̂1r , r = 1, . . . ,9} are complementary to {μ̂2r , r = 1, . . . ,9}: the
expression level is smaller within the White Matter area than outside. To ensure that the co-
clustering was not driven only by the mean effects, we run also SPARSEBC using the same
number of blocks and λ = 10: the CER between the gene clusters returned by SPARTACO and
SPARSEBC is 0.44, confirming that the two methods perform a substantially different group-
ing of the data. A further confirmation of the evidence of our gene clustering is given by the
very small uncertainty displayed in the left panel of Supplementary Figure 11 (b).

The results discussed above allow us to answer the first two research questions, listed in
Section 1.1, that motivated our work. We now turn our attention to the third research question,
namely, the identification of genes that exhibit high specific variation. To do so, for every

spot cluster r we investigate the conditional random variables σ 2
Ẑ i r,i

|xẐ i r
i. , for i = 1, . . . , n,

to determine which genes are most highly variable in each block. We display their density in

Supplementary Figure 12, highlighting in red the 20 genes with the largest E(σ 2
Ẑ i r,i

|xẐ i r
i. ) for

every r . We expect that genes with a large gene-specific variance in some areas are likely to
be informative of the biological mechanisms occurring there.

First, we notice that all the most variable genes in each of the nine spot clusters belong
to C2. Among the highly variable genes in D1, D8 and D9 there are MBP and PLP1, which
are responsible, respectively, for the production and the maintenance of myelin, the covering
sheath of the nerve fibers in the White Matter. Conversely, among the highly variable genes
in D2 and D7, we notice PCP4 and CCK: these are markers of distinct subtypes of excitatory
neurons present in Layers 5–6 (Hodge et al. (2019)). We display the expression of the four
genes discussed here in Supplementary Figure 13, showing their pattern in the spot clusters
where they appear to be highly variable.

Supplementary Figure 12 highlights some important differences between ranking genes
according to the posterior distribution of our gene-specific variance σ 2

i and the method of
Townes et al. (2019) that only ranks genes based on variability without considering the spatial
context. This analysis may be used to highlight important genes that would have been missed
if the spatial structure of the data would not have been taken into account. Two examples
are CERCAM and SAA1: their ranks, according to Townes et al.’s method, were 465 and
271, while SPARTACO places them among the most variable genes in the White Matter
area (cluster D1) and in a region covering the Layers 3, 5 and 6 (cluster D6), respectively.
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We display their expression over the whole tissue in Supplementary Figure 14. CERCAM
encodes a cell adhesion protein involved in leukocyte transmigration across the blood-brain
barrier (Starzyk et al. (2000)), while SAA1 is highly expressed in response to inflammation
in mouse glial cells (Barbierato et al. (2017)).

Taken together, these results convincingly show that our model is able to partition the tissue
in coherent clusters, which exhibit cluster-specific gene expression, both spatially coordinated
and otherwise, and to detect highly variable genes of potential biological interest in specific
areas of the tissue that would not have been found without considering their spatial variability.

6. Discussion. The growing demand of appropriate statistical methods to analyze spa-
tial transcriptomic experiments has driven us to develop SPARTACO, a model-based co-
clustering tool that groups genes with a similar profile of spatial expression in specific areas
of a tissue. SPARTACO brings the concepts of spatial modelling into the co-clustering frame-
work, and thus it can be applied to any dataset with entries in the real domain and whose
row or column vectors are multivariate observations recorded at some fixed sites in space.
The inference is carried out via maximization of the classification log-likelihood function.
To do so, we put together two variants of the EM algorithm, the classification EM and the
stochastic EM, forming what we called the classification-stochastic EM. We completed our
proposal deriving the formulation of the ICL for our model to drive the model selection.

A series of simulation studies have highlighted that, in the presence of spatial covari-
ance patterns, the major co-clustering models become inadequate to recover the hidden block
structure of the data. On the contrary, SPARTACO has shown remarkable results in each sim-
ulation, managing to distinguish different spatial expression profiles in different areas of the
image. It further revealed to be robust to the presence of a nuisance component into the data.
The model selection driven by the ICL revealed to be precise but computationally expensive,
due to the large number of times the model must be run. On the contrary, other criteria that
do not exploit the spatial information of the data are computationally attractive but less ac-
curate. We conclude that the two approaches can be used jointly, using the results given by
a fast model selection criterion, such as the PCA-k-means method discussed in Section 4.3,
to restrict the range of K and R values to be tested with SPARTACO’s ICL criterion. Lastly,
we demonstrated how our proposal is capable of answering specific biological research ques-
tions using a human brain tissue sample processed with the Visium protocol. Our model has
identified two clusters of genes with different spatial expression profiles in nine different ar-
eas of the tissue. A subsequent downstream analysis has allowed us to determine the highly
variable genes in each of the nine pinpointed areas. We additionally showed that some of the
genes, considered as poorly informative by the deviance method of Townes et al. (2019), are
revealed by SPARTACO to be highly variable in specific areas of the tissue sample.

Although this article has introduced a complete solution to answer some relevant ques-
tions in the analysis of spatial transcriptomics, we believe that there is space for further ex-
tensions. To use SPARTACO on spatial transcriptomic experiments, the UMI counts must be
transformed through a real-valuated function, as discussed at the beginning of Section 2. We
performed this step using the pre-processing techniques of Townes et al. (2019) which in our
application have led to approximately symmetric distributions of the gene expression vectors
xi . In addition, our model is theoretically robust with respect to the presence of heavy tail dis-
tributions, thanks to the random parameters σ 2

kr,i , that allow to go beyond the normal assump-
tion. Nevertheless, SPARTACO could be extended to directly model UMI counts, similarly
to how SPARK (Sun, Zhu and Zhou (2020)) has extended SpatialDE (Svensson, Teichmann
and Stegle (2018)). Second, to overcome the limitations of the stochastic EM presented in
Section 4.5, we could explore the simulated annealing algorithm (van Laarhoven and Aarts
(1987)) to reduce the chances of converging to local maxima.
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SUPPLEMENTARY MATERIAL

Supplementary to “Co-clustering of spatially resolved transcriptomic data” (DOI:
10.1214/22-AOAS1677SUPPA; .pdf). Contains the derivation of our information criterion,
details on the spatial covariance functions and on the gene covariance matrices used in Sec-
tion 4, details on the PCA-k-means method for selecting the number of clusters, a discussion
on the computational costs of SPARTACO, and additional figures.

Software (DOI: 10.1214/22-AOAS1677SUPPB; .zip). Software in the form of an
R package that implements SPARTACO is also available online at https://github.com/
andreasottosanti/spartaco. All the scripts to reproduce the simulations and the real data anal-
ysis are also available at https://github.com/andreasottosanti/SpaRTaCo_paper.
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